

Vision Workshop Auroville, 7-9 September 2011

REGENERATIVE TOWNSHIPS OF TOMORROW

Session on ENERGY

Town Hall Conference Room

09h00-12h30

Workshop objectives

- Address 2 key questions
 - What characterizes a regenerative township?
 - How can we move towards regenerative townships from where we are now?

Dictionary definition of "REGENERATIVE":

- 1. Renewal or restoration of a body, bodily part, or biological system (as a forest) after injury or as a normal process
- 2. Spiritual renewal or revival

Why regenerative township?

"I am I plus my surroundings and if I do not preserve the latter, I do not preserve myself."

Jose Ortega Y Gassez Spanish Philosopher

Creating regenerative cities

Rapidly urbanizing Asia

Twin forces of industrialization and globalization have accelerated urbanization in Asia at a faster rate than it happened in the western world.

Source: http://www.worldmapper.org/index.html

Inequitable growth in Asia

Rich hiding behind the poor:

The urban population accounts for 87% of India's electricity.

More than 30% of the urban population in South-Asia do not have electricity.

Limits to growth

- Carrying capacity and ecological footprint
 - Each nation should consume less than 1.8 hectare per capita of the ecological footprint available, while being granted an HDI of 0.8 or better (example: Cuba)
 - To live like Cubans, we need to decrease our numbers by 1 billion!
- Energy consumption and dependence on fossil fuels
 - Current world energy consumption is around 420 EJ/year (≈13 TW; 2 kW per person)

- When there is very little fossil fuel left
 - Alternative energies available may add up to 1 kW per person

The longer we continue in our current exponential growth pattern, the more painful the subsequent adjustment will be.

Challenges for Asian cities

Energy is all pervasive in cities

All essentials of modern-day urban living depend on energy:

 Housing, industry, transportation, water supply, waste management, and running of commercial or social enterprises

Energy services form the backbone for growing urban centres

How can cities with linear metabolism transform

Resources from the hinterland

Production and services

Distribution

Usage

Waste Generation

Waste
Disposed
off in the
hinterland

... into cities with circular metabolism

Resources

Demand for less resources from the hinterland

Less waste dumped in the hinterland Recover & Recycle

Tapping resources & closing the loop within the city

Production & Services

Usage

Distribution

Energy sustainability challenges

How can we build SMART CITIES that are high on energy sustainability?

Environment

Housing/Complex

Distribution/ Logistics Retail

Traffic

Mamt

Space /public Area

From primary energy to energy service

Primary energy

(coal, oil, gas...)

Energy conversion facility

(Refineries, power plants...)

Secondary energy (Refined oil, electricity...)

Energy using equipment/ system

(lamps, motors, machines...)

Final energy

(delivered to consumers)

Transmission and distribution

(Pipeline, grid network, railways)

Energy services

(lighting, motive power, chilled water...)

End-use activities (products manufactured, food cooked, distance travelled, ...)

Infrastructure for energy service

The example of lighting

Lighting consumes about 19% of the world electricity production (Source: IEA)

Coal

Power Plant

Transmission Grid

Lamp

Radiant Energy Illumination

Thermal power plant conversion efficiency 35%

Transmission and distribution losses 12%

Incandescent lamp conversion efficiency 10%

Grossly inefficient energy infrastructure

From energy supply to lighting service

Small local action for large global benefit

Doing more with less: Achieving Factor-Four Objectives

Coal Power Plant Transmission Grid Lamp Radiant Energy Illumination

Green energy infrastructure

- End user (demand-side)
 - Investment to avoid the demand for a kW: < 4,000 Rs
- Power utility (supply-side)
 - Investment to increase generation capacity by a kW: 40,000 Rs
- CFL Production Facility (Virtual power plant)
 - Production: 3 million CFL per year
 - Avoided demand: 1,350 MW (during 10 years production)
 - Investment: 0.75-1.0 billion Rs
 - Operating cost: ???
- Fossil-fuel based thermal power plant
 - Production: 1,350 MW
 - Investment: 60 billion Rs
 - Operating cost: ??? (mainly fuel cost)

Factor-IV for the building sector

Malaysia: Progressive energy efficiency improvement of office buildings

Transition from Factor-IV to Factor-VIII

- Further options to close the loop
 - Integrated strategic energy management
 - Cogeneration

Cogeneration and district cooling for over 600 000 m² of floor space in the KLCC North West Development area.

Transition from Factor-VIII to Factor-X

Achieving Factor-X objectives

Buildings

Industry & Commerce

Transport

Agriculture

Moving from demand to supply side

- Renewable energy options to lower the dependence on dwindling fossil resources
- Protection from possible future fossil energy hikes

Transition from standard buildings to...

Example of standard building practices in tropical climates

... Designing of low energy buildings

Example of low-energy building design in tropical climates

Solar power generation in buildings

- Solar power system
 - Low operating costs
 - Greater independence from fossil energies

Energy sustainability: 4-step approach

Define the need (vs. greed)

Design well to match the need

Choose energy efficient system

Increase share of renewables

Concept of working with closed loop

Starting at individual level, moving onto neighborhood and community levels instead of linear functioning of energy systems

Favorable policies nurturing

"prosumption"
Example of buildings that

- Provide comfort and improve well-being
- Generate energy
- Harvest water
- Convert organic waste into compost
- Produce food
- Treat waste water for reuse, etc.

Favorable public policies

- Provide incentives to
 - Close the loop, starting at individual level, moving onto neighborhood and community levels
 - Consumers who opt to become "Prosumers" producing a share of what they consume

Examples:

- Renewable Portfolio Standards
- Development of Solar cities
- Investment in Wind farms

Further options to close the loop

Local authorities can lead the way to urban energy sustainability

- Choose right policy instruments and introduce effective policies (e.g. construction permits, vehicle quota system...)
- Adopt integrated energy planning tools to assess energy service needs, energy saving and efficiency interventions, and supply-side options
- Strengthen the collective awareness and decision-making of urban dwellers
- Say "no" to mega projects and focus on innovative localized solutions to gain social and environmental benefits

Good practice of urban governance

- Make resource use more efficient by addressing demand in a manner that system wastages are minimized
- Make transition towards alternative solutions that lower the pressure on the environment and provide livelihood opportunity to the disadvantaged population through social empowerment
- make reforms in spatial planning, closing material and energy loops, and changing the way mobility is handled in a city
- Sensitize and encourage urban consumers in becoming prosumers through suitable policies, regulations and incentives
- Promote smart growth that reduces the demand for resources greatly without any drastic change in lifestyles
- Influence changes in the mind-set of urban dwellers so that they seek solutions that are decentralized, democratic and pro-poor

"The rich should live simply, so that the poor may simply live."

- Mahatma Gandhi

